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Abstract. The well known graphical technique for angular momentum theory is adapted for 
application in compact groups, including crystal point groups. The adaptation has been kept 
to a minimum; for simple phase groups, not much modification is called for. Phase con- 
ventions and permutation matrices are included by following Butler’s algebraic treatment. 
Irreducible tensor operators, their conjugate tensors and the analogy with Feynman diagrams 
are discussed. 

1. Introduction 

Graphical techniques in angular momentum recoupling theory were developed by 
Jucys, Levinson and Vanagas and have been modified and applied by many workers. 
Two particularly helpful accounts are those of Brink and Satchler (1968) and Sandars 
(1969), who give earlier references; among later references we mention Briggs (1971) and 
El-Baz and Caste1 (1972). 

Coupling techniques and tensor operators for finite (and non-commutative) groups 
have been discussed by many authors. The book by Griffith (1962) has been of particular 
significance for solid state physics, and covers many crystal point groups (0, DJ. His 
tabulations of n-jm symbols have been extended by Harnung (1973) to the octahedral 
spinor group, and by Butler and Wybourne (1975) to the tetrahedral group. The subject 
had been plagued by problems regarding phase conventions which have only recently 
been resolved. We take Butler’s (1974) review as definitive for our purposes. All phases 
and permutation effects will be incorporated in the diagram method. 

A diagram technique for compact groups has already been developed by Agrawala 
and Belinfante (1968). We have made use of several of their rules, in particular, using a 
stub for a 2-jm symbol, and a dotted line for a multiplicity index. However there are 
sufficient points of contrast to warrant a separate development. Phase problems have 
been simplified since their work ; we depict matrix elements rather than operators ; our 
diagrams may be rotated and are much closer in appearance to the conventional R ,  
diagrams. Hopefully, the relative lack of technicalities and the examples included will 
assist the reader to gain facility quickly. An example of a standard coupling calculation 
(proof of the Racah back-coupling relation) is included to illustrate the full machinery 
we develop. Since diagrams make heavy demands on space, we shall not normally 
reproduce the algebraic equivalent of our diagrams. Equation x of Butler (1974) and 
equation y of Sandars (1969) will be quoted as Bx, Sy throughout ; Butler’s to give the 
exact algebraic equivalent, Sandars’ to give the analogous R ,  diagram. 
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2. Diagrams in elementary group theory 

Consider a compact group G with elements g. A unitary irreducible representation 
(irrep) of G will be denoted by a Greek letter 1, and the components by the corresponding 
Latin letters I ;  the dimension 111 will also be represented by 2 = I A I ” ’ , ~  = 121-”’. 
following Sandars. Most of our notation will follow Butler (1974). 

The representation matrix element, (AllOJAl‘) = will be represented by 

I: 

11 I’  
(S4.1) ag)ll, - +. 

Crudely speaking, the group operator 0, is represented by a solid triangle (‘fulcrum’ ; 
we avoid the lines of Sandars (1969) and Agrawala and Belinfante (1968) since, with 
multiplicity lines and Feynman propagators, it would make for confusion) and the bra 
and ket states by solid lines. Strictly speaking the diagram may not be dissected; to be 
consistent with (j 5 we should have to introduce a 2-jm symbol on the bra line even at 
this early stage. 

Some general rules for diagram interpretation follow. All our diagrams may be 
rotated and mildly deformed, but not reflected. A vertex represenk a matrix element or 
n-jm symbol. The order of suffices in the matrix element is given by working anticlock- 
wise from the definitive symbol, in this case the triangle. A labelled solid line gives the 
relevant representation and component. Omitted labels are automatically summed over 
the group and representation respectively. The right side of equation (1) is thus un- 
ambiguous. The game we play is to invent diagram definitions which obey these rules, 
which are elegant, and which will unambiguously return the algebraic equations of 
Butler (1974). 

Complex conjugation is indicated explicitly : 

Group multiplication 

g h  gh ’ 

(B2.8) ‘I v - v - -  
il I‘ 11 I’ 

and unitarity 

are direct consequences of our rules. 
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By linking ends in equation (1) we introduce a dtl, factor; summing over 1 and I' 
gives the character : 

A simple closed loop labelled I therefore has the value 2. 
A group integral (lGI-'Xg for a finite group) will be denoted by connecting the group 

operators to a solid circle, following Sandars (1968). The great orthogonality theorem 
becomes : 

If p = 1 (the identity representation) we derive 

Joining ends in equation ( 5 )  we obtain the character orthogonality theorem : 

3. n-jmsymbols 

3.1. 3-jm symbol 

The identity irrep 1 occurs just once in the Kronecker product A @I A* ; we may therefore 
define the multiplicity nA,A2A3 (= R) of the triple ( A ,  I 2  A,) either as the number of 
times 1 occurs in A1 @I A2 @I I, or the number of times AS occurs in A l  @I A,, etc. If, for 
all triples in a group, R < 1 (eg R , )  the group is simply reducible. In general, R > 1, and 
R sets ofcoupling coefficients are necessary for each triple. We label these by r = 1, . . . , R 
and define the diagram form : 

(8) (S3.1) 
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Complex conjugation (necessary for the tetrahedral group, for example) is represented 
explicitly. Note that all the rules in $ 2  apply to this definition, the ordering being 
derived from the position of the multiplicity line. 

A permutation (A, Ab EJ of the triple (A, i., A,), (abc) = n(123), will in general result 
in a new set of coupling coefficients 

related to the old set by a matrix {n,il A 2  In R,, where R d 1, the permutation 
matrix reduces, for cyclic permutations to unity and, for interchange permutations to a 
real phase of the form: 

(9) 

It will prove to be elegant and convenient to avoid interchange permutations where 
possible by using twisted versions of the R ,  diagrams, especially in the general case when 
permutation matrices cannot be avoided. 

((12)i, i, i 3 j r s  = ( - i p + ~ z + j 3  6,s. 

One important result, equivalent to the unitarity of {n, 2, I., j.3)rs, is 

where the omitted multiplicity index is summed and i represents Aili. Note that internal 
multiplicity lines will invariably connect the same triple in the same order. The following 
results appear naturally: 

A1 I' r - .... 
= dL*< (B5.5) 

(S3.12 b) ............... 
r S *. s 

5 

........ (B5.7) 
64.4) r 

............ 
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3.2. Special cases 

If I l  = 1, the 3-jm symbol reduces to a unitary matrix that also relates 121) to IA*l'), 
called a 2-jm symbol (or 1-j coefficient) : 

We prefer this stub representation to the (R3)  arrow representation ; it emphasizes the 
connection with a 3-jm symbol and the difference in A1,I'l'; note that if A # A* it matters 
which side of the stub we write A. The reader who prefers arrows may simply replace 

in all subsequent diagrams. In 4 6 we show that the Feynman arrow on lines internal 
to a Feynman diagram has the same sense as the group-theoretical arrow of equation (1 5). 

The 2-jm symbol may be chosen to be real (orthogonal), and of the form (A)IIt = all,,  
ie, just one element in each row is non-zero. The orthogonality relation is written : 

The phase $ A  = produced by reflection may be written: 
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According to the Derome-Sharp lemma (B8.2) 

(B8.2) 
r (S3.4) 

- - 7-2 ....... 

4 1 1  

where a stub on a multiplicity line signifies the (real orthogonal) matrix A(& A, 
of (B8.2), with the usual anticlockwise convention. The second part of equation (17) 
follows from the first part, equation (16) and the orthogonality of A(A, A, We 
shall ignore the stubs on multiplicity lines, since for many finite groups (including 
crystal point groups, Butler and King 1974) A& /1, jb3)rs = d r S ;  ie, we assume quasi- 
ambivalence. 

Equations (3), (12) and (14) give that 

A loop with a stub has a simple value : 

A Clebsch-Gordan coefficient (in Butler's (1974) 'sensible' phase convention, from 
which the R ,  convention unfortunately differs) is written 

Using equations (16), (17) the complex conjugate coefficient is 
c .  
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It is easy to verify the orthogonality relations for Clebsch-ordan coefficients 
(B3.3, 3.4, 3.6) using these diagrams. We shall also need the results 

2' l'w: - - c ........ ,.a: : :-e* ,..... .* *., ....... c' 2 3 

... 3' ..a* . * ....... 
4 1 

1 4 

where i represents Ail i ,  and i', Ail;. Equation (23) is proved by using equation (1 1) twice, 
and then equations (12), (22), on the left side. 

3.3. Permutation matrices 

As explained in 0 7, the detailed manipulation of permutations is an unnecessary com- 
plication for many applications. However, a diagram technique can be valuable. 

Let (abc) represent a permutation IC of (123). The permutation matrix is defined by 

C 

........... ............. 2. (24) 
r f: b = I { Z J I  A2 Aj}r3 

S 

a 

It follows that (using equation(9a)) 

........... .......... 
S 

{II, 1, A 2  13}rs = 
r 

a 
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where the box labelled rc signifies the necessary linkage. We obtain the particular 
values of table 1. Permutation matrices may be chosen to be real. Labels AILz& need 
not be added since each multiplicity line must connect the same triple. 

Table 1. Representation of 3-jm permutation matrices. The columns give the permutation 
II and the diagram form of {n, 1,1, &},S. These diagrams will be drawn on a smaller scale 
in the following. 

(12) "*. m* ..... 

(23) * * * * *  ..... 

(123) . * * *  a* ...... 
..... 

3.4. n-j for n > 3 

A 6-j symbol may be defined as 

Note that the pi labels are in leading positions relative to the inward-pointing stubs. 
Diagram proofs of the various symmetries of the 6-j symbol (B9.7, 9.8, 9.9) represent 
simple exercises in permutation manipulations. 
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A 9-j symbol similarly becomes 

(B10.2) 
(S5.6) 
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4. Jucys-Levinson-Vanngas theorems 

As in Q 3, it becomes natural to introduce a twisted version of the standard theorems 
when generalizing them for the inclusion of multiplicity lines. 

4.1. Basic theorem 

If a subdiagram A, has n external solid lines (and any number of external multiplicity 
lines), consists of 3-jm vertices, and has one 2-jm symbol (stub) on each internal line, it 
is invariant under a group operation except for the external lines : 

(any stubs on the n lines external to A, are to be included in B). 

Proof. Use equation (12) for each internal 3-jm, and note that each internal line has the 
form 

Subsidiary Theorems. Perform a group integral, and then apply equations (6), (22), (13) 
and (23) to the basic theorem for n = 1,2,3,4 respectively: 

YLV1:  @-a + *+J&l 
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YLV 3 :  A3 --* @q A3 .... 
21 

Note that in (31) any two 3-jm’s may be starred. Thus the YLVn theorems appear as 
the analogues of equation (1 1) for multiplicity lines. 

For the groups in which we are interested, singlet representations A(l2l = 1) are 
relatively common. If A1 is a singlet and A 2  = AT, the phases Al(g) l  122(g)l cancel, and 
we have special cases of equations (30), (31) : 

Space permits of only one example of all preceding theory ; we take the Racah back- 
coupling relation (B9. lo), which illustrates 6-j symmetries, permutation matrices, YLV4 
and all the more fundamental results. We compute the right side of (B9.10) : 
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= c  
vrr' 

= c  

which equals the left side. 

5. Tensor operators 

We depict the matrix element of a tensor operator by 

< ~ l ~ l l Q # 2 ~ 2 )  ++ 

1 1 1 1  1 2 1 2  

This asymmetric definition is used in order to ensure the following theorems. 

(34) 
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Theorem 1. If Q: is an irreducible tensor operator, the box labelled Q is an invariant 
subdiagram. 

Proof. Insert O,O,-, factors before and after Q: in the matrix element. Use 0;- I = 0, 
to write out the effect on bra and ket explicitly; use the 
O,QtO,- I = Q$2(g)ltl. Hence 

defining relation (B16.2) 

Applying YLV3, we obtain the Wigner-Eckart theorem (B16.4) 

Unlike Sandars (1969), we find considerable value in this diagrammatic representation 
of a reduced matrix element, partly because of the multiplicity summation. 

5.1. Conjugate operator 

Under complex conjugation, equation (34) becomes 

The asymmetry in equation (34) has the consequence that the box labelled Q' is not an 
invariant subdiagram, ie the Hermitian conjugate of an irreducible tensor operator is 
not a tensor operator. Instead we have the following theorem. 

Theorem 2. If Q: is an irreducible tensor operator, 

Q$ E (Qt )+ (AhiS  

is also an irreducible tensor operator, conjugate to Q:. 

(37) 
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Pro05 From equation (36) 

It has been known for some time (eg Judd 1967) that if the Hermitian conjugate of 
an R, tensor operator is to obey tensorial commutation relations, a phase (- ly-" has 
to be included. This is just the R, counterpart of the 2-jm symbol introduced in equation 
(37). We note that the definition of a tensor annihilation operator in equation (14) of 
Wybourne (1973) should include the 2-jm symbol for the finite group under consideration 
(as well as the R, phase for the spin part) in order to be a double tensor. 

It is a simple exercise in diagrams to obtain the relation between the reduced matrix 
elements of a tensor and its conjugate, using equations (35) and (38): 

1 
ie 

(39) 

(39) 

5.2. Coupled tensor operators 

We write the matrix element of an operator product by inserting a complete set of 
states 
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Using equation (21) we may couple the K~ lines and still leave internal parts invariant, 
thus constructing a new tensor operator : 

Rk 

A straightforward application 
reduced matrix elements : 

of equation ( 3 5 )  and YLV3 yields the relation between 

.... 
1 

6. Application to Feynman diagrams 

Consider first a perturbation involving three creation or annihilation operators (eg 
electron-photon, ion-phonon interaction) : 

Hi = 1 a~mavn(Vpm,vn,Kk +b$ + 'pm,vn,Kk - b ~ k ) .  
emvnKk 

It is necessary for our purposes to distinguish the various coefficients V .  aim creates a 
quasi-fermion in a state transforming as component m of irrep p, etc. Since the vacuum 
is an invariant, a,?, is a tensor operator, (at)k, and bJk = (bt);. From equation (37), 
(fig* = upm(p)", and (b);?: E b K k ( K ) k k ,  are the conjugate tensors. On substitution into 
the above equation we obtain 

However, Hi is also an invariant operator ; the coefficients of the tensors must couple 
them into the identity representation. Using equation (40) repeatedly we find that a 
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matrix element of Hi has the form (a box represents an arbitrary invariant diagram) 

,@ at bt a“ 
YLV 2 - at bt ii 

P 

. . .@ .... @) 
at bt a“ YLV 3 

ie, the coefficients must be essentially a complex conjugated 3-jm symbol whose multi- 
plicity index is summed with an arbitrary ‘reduced matrix element’ (cf thejm coefficients 
of Brink and Satchler 1968). Hence 

Since H i  is Hermitian, VNm,vn,rk+ - - *  Vvn,pm,xk-  and therefore 

P* P* 

[ j * = ..?@ , 

V V 

The 3-jm parts of equations (42) and (43) are topologically identical to the correspond- 
ing Feynman diagrams : 
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even to the extent that a 2-jm vertex on a 'creation' line corresponds to a Feynman arrow 
with the same sense as the angular momentum arrow of equation (15). It follows that 
each line internal to a Feynman diagram has one 2-jm vertex on it. We conclude (cf 
fi 4) that the internal parts of a Feynman diagram are invariant, and that the transform- 
ation properties of such a diagram may be obtained by using the YLV n theorems on the 
free ends. 

For four-operator interactions (eg nonlinear ion-phonon interaction) the cor- 
respondence necessitates some standard form of coupling. We could take, for example, 

where boxes represent invariant diagrams. While exact isomorphism is not possible, 
the comments of the last paragraph continue to apply. 

7. Simplifications for crystal point groups 

If the group G is simply reducible (n,,,,,, G 1 for all E,, in G, cf Q 3), the only modification 
to the standard R ,  diagrams that is necessary is the re-interpretation of the phase 
associated with any interchange permutation (use equation (9) where ji is now a number 
permanently associated with Ai (Butler 1974, Griffith 1962)). If, in addition, our 'twisted' 
versions of the standard diagrams are used, interchange phases are rarely needed. 

A point group G may not be simply reducible (eg 0, O,,T = tetrahedral group, 
K = icosahedral group). If it is a simple phase group, that is, if 

c [mi3 = c xi(g3): 
g g 

^cB = ;...e:..: .... 
'. ................. 

or (as an equivalent definition) 1 does not occur in the mixed ( S , )  symmetry part of 
I @ E, @ I ,  for all /2. in G (Butler 1974), cyclic permutations are invariance operations. 
If, in addition, a judicious choice of conventions is made, it may be possible for some 
simple phase groups (eg the tetrahedral group: Butler and Wybourne 1975) to make 
the interchange matrices diagonal and simply related to the R ,  phase of equation (9): 

m{n, i1 i,, i.3}rs = J r S ( -  i ) j ~ + j 2 + ' 3 + ~ -  (48) 

whereji is a number permanently associated with A i ;  71 = (12), (23) or (31). In this case 
the coupling systematics are very similar to those of R ,  (multiplicity lines and I # 1," 
being the two chief differences) and our comments on simply reducible groups apply. 
We see, from the tables of Boyle (1972) that all crystal point groups are simple phase. 
However, if (a) it is not possible to satisfy equation (48); or (b)  existing tabulations are not 
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consistent with equation (48), and particularly if (c) intra-atomic coupling is analysed 
using such groups as R, or G, (which are not simple phase), our general formulation 
is required. 

8. Conclusions 

The diagram technique for angular momentum can be generalized to all compact 
groups. The main alterations necessary are the introduction of multiplicity lines and 
permutation matrices for non-simply reducible groups. 'Twisted' forms of the standard 
results prove easier to use in practical coupling calculations. The technique can be made 
particularly simple for simple phase groups. Isomorphism exists with Feynman 
diagrams, including the sense of the propagators. Internal parts of a Feynman diagram 
correspond to invariants ; therefore, generalizations of the powerful general theorems 
of Jucys et a1 may be applied. The theoretical or experimental physicist who has some 
familiarity with the R ,  technique need learn very little additional material in order to 
employ the technique for compact groups. 

As in the case of R ,  , diagram techniques permit the elegant and rapid reduction of 
a complex problem to its grouptheoretic essentials. In a following paper we will 
illustrate the technique in discussing lineshapes in a Jahn-Teller active system. The 
economy of the method is in striking contrast to the heavy algebra otherwise necessary 
in this example. 
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